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A hydromagnetic model has been developed to study resistive instabilities in cylindrical 
geometry, and the mode1 is applied to study specific diffuse pinch configurations. The 
MHD’equations include the effects of compressibility, finite resistivity, viscosity, and 
thermal conductivity. The plasma equilibrium configuration is assumed known and is 
specified by &,,(r), B,(r), I, p&), T,(r) and these functions can be chosen to describe a 
particular experiment. Perturbations of the form fi(r, t) exp[i(m6 + k,z)] are used for all 
plasma and field variables, and the resulting linear partial differential equations are solved 
numerically as an initial value problem using an implicit difference scheme. A set of seven 
equations for B,, , BeI , G , u,~ , val , uzl , p1 is obtained and the calculation is started by 
specifying an initial perturbation. For a particular problem, the parameters m, k,, and 
S = 7R/TH, the ratio of resistive diffusion time to hydromagnetic transit time must be 
given, and for certain choices an exponential growth occurs and the growth rate p(m, k, , S) 

is calculated. 

1. INTRODUCTION 

In order to achieve the high densities and temperatures required for a successful 
thermonuclear reactor, a plasma must be confined by a magnetic field for a sufficiently 
long time. In the attempts to achieve this confinement, the problem of stability has 
emerged as one of the most important. A plasma confined by a magnetic field is 
potentially able to break out of the confinement system by a large variety of insta- 
bilities, and a number of field configurations have been proposed which could confine 
a hot plasma in equilibrium, if such configurations were stable. 

The most dangerous type of instabilities are the magnetohydrodynamic (MHD) 
or hydromagnetic instabilities in which the plasma is assumed to behave as a con- 
ducting fluid and the instabilities involve displacement of macroscopic portions of the 
plasma. It is a particular MHD instability, the resistive instability, which is considered 
in this paper. 

One of the earliest plasma confinement schemes tested was that of the pinch effect 
in which an axial current in a cylindrical plasma produces an azimuthal field that 
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constricts or pinches the plasma. It has been found both theoretically and experi- 
mentally that such pinch configurations are unstable to MHD type instabilities, 
and the four lowest order distortions are shown schematically in Fig. 1. The m = 1 
kink instability is usually the most dangerous since it allows the plasma to break 
through the confining magnetic field to reach the walls. 

m=2 m=3 

FIG. 1. The four lowest-order distortions for a cylindrical plasma. The dotted lines represent 
the equilibrium cross section. 

The pinch can be made more stable if a magnetic field parallel to the axis is trapped 
within the cylinder and if there is an azimuthal external field generated by a current 
at the surface of the plasma column. For this configuration, the sausage (m = 0) 
and kink (m = 1) instabilities bend and compress the field lines, bringing into play 
forces which oppose the growth of the instability. Unfortunately, it has not proven 
possible to stabilize the pinch completely, since in reality the current flows in a layer 
of finite thickness and a localized instability can develop. In the present analysis, a 
pinch configuration is established in which the pla!ma currents are assumed to be 
diffuse, i.e., the axial and azimuthal currents are not restricted to a thin plasma sheath 
but are uniformly distributed throughout the plasma. The plasma is assumed to 
completely fill an infinitely long plasma cylinder. 

Resistivity can destroy the stabilization achieved by the shearing of the lines of 
force. In the case of a magnetic field which has shear or which changes direction as 
illustrated in Fig. 2c, the magnetic energy can be reduced by allowing the fields to 
mix and annihilate. This is prevented by a perfectly conducting plasma. However, 
for finite conductivity an instability can develop in which the magnetic lines of force, 
as shown in Fig. 2a, are torn into loops or rings, as shown in Fig. 2d. This type of 
resistive instability is known as a resistive tearing mode [l]. 

There are three types of resistive modes: (1) the rippling mode, which is driven 
by a gradient in the resistivity and is usually not important at high beta where large 
temperature gradients are unlikely; (2) the gravitational mode (g-mode) which is the 
resistive equivalent of the interchange instability and is important in sheared systems; 
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(d) 
FIG. 2. Resistive instabilities: (a) stabilized pinch with kink in .7 (m = 1); (b) stabilized pinch 

with sausage in J (m = 0); (c) reversed field layer; (d) resistive tearing instability of reversed field 
layer. 

and (3) the tearing mode, which is the resistive equivalent of the kink mode and 
involves displacement of the whole plasma. The last two modes are important at 
high beta, and both are found using resistive MHD theory. 

The tearing mode differs from the other two modes in that it is typically a long- 
wave rather than a short-wave mode relative to the dimension of the current layer, 
and consequently it is expected that it would be stabilized by conducting walls. The 
driving force is due to the structure of the magnetic field outside the region of 
decoupled flow, i.e., the tendency of a sheet current to break up into a set of parallel 
pinches. The modes grow on a time scale intermediate between the resistive diffusion 
time TR = 4?zu2/r)c2 and the hydromagnetic transit time TV = a(&~)~/~ B-l where 
a is a characteristic dimension of the plasma layer, q is the resistivity, p is the mass 
density of the plasma, B is the magnetic field, and c is the speed of light. For theory 
to apply, it is required that S = T&H > 1. 

The basic paper on resistive MHD instabilities is that by FKR [l] who analytically 
treat all of the possible linear resistive instabilities of a plane plasma sheet in a sheared 
magnetic field configuration, and describe in detail the driving forces of the insta- 
bilities. Similar analyses have been done in cylindrical geometry by Coppi et al. [2] 
who examined resistive instabilities for a diffuse linear pinch. In addition, Coppi 
et al. [2] considered the effects of viscosity and thermal conductivity and found that 
viscosity can have a stabilizing effect on resistive modes. 
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Due to the many possible equilibrium configurations and the many approximations 
necessary to make the problem analytically tractable, it is usually not possible to 
analytically describe the general parameter dependence of the growth rates of the 
resistive instabilities. Also, the analytic tratments are usually done in the limits of 
high and low S. In order to supplement the analyses for intermediate values of 5’ 
and to be able to obtain results for specific and wide choices of equilibrium magnetic 
fields and boundary conditions, numerical models have been developed to study these 
resistive instabilities. 

The numerical models are based on the linearized equations which assume an 
arbitrary time dependence, i.e., the hydromagnetic equations are Fourier analyzed 
in space but not in time, and the problem becomes an initial-value problem for the 
perturbed quantities. Also, two regions are not used, instead the same resistive 
equations are assumed to hold throughout the plasma. The parameters, initial con- 
ditions, boundary conditions, and type of modes to be examined can all be varied. 

Based on the incompressible hydromagnetic equations, a time-dependent, resistive 
instability computational model for both Cartesian and cylindrical geometry was 
developed by Killeen [3] and has been applied to the Triax experiment, hardcore pinch 
configurations, the thetatron, and to a force-free Bessel function model, [4] all of 
which were tearing mode calculations. The general computational model used included 
resistive and gravitational effects due to convection. 

In this paper, a new cylindrical model is developed; a general model which includes 
the effects of compressibility, finite resistvity, viscosity, and thermal conductivity. 
In Section 2 the specific equations used in the model are presented, and in Section 3 
the finite-difference equations are presented and the method of solution is described. 
In Section 4 the computational model is applied to different types of equilibrium 
magnetic field configurations. The equilibrium configurations are tested for resistive 
tearing instabilities in the parameter space about which li * B = 0. Growth rates are 
calculated for various (m, k,) modes and the results are presented in the form of 
stability diagrams. Additional parametric studies are also performed to determine the 
specific dependence of the growth rates on the position of outer conducting wall 
R, , the axial wave number k, , and the magnetic Reynolds number S. 

2. MATHEMATICAL MODEL 

We describe the plasma by the equations of magnetohydrodynamics for a single 
fluid. Thermal conductivity, electrical resistivity, and viscosity are included and are 
assumed to be scalar functions. The continuity equation is 

(WW + v - (pv) = 0 (1) 
where p and v are fluid density and velocity. The equation of motion is 

p((&/at) + v * Vv) = (l/c)(j x B) - Vp + pv[V2v + &V(V . v)] (2) 
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where p is the pressure, j is the current density, B is the magnetic field, v is the coeffi- 
cient of kinematic viscosity. The energy equation is 

p((aT/at) + v . VT) = -(y - 1) pT(V . v) + KV2T + (y - 1) 7 1 j j2 

+ (y - 1) p4 v x v I2 + Q(V . v)“] (3) 

where T is the plasma temperature, K is the thermal conductivity, y is the gas constant, 
7 is the resistivity. The equation of state is p = pT and the Ohm’s law is given by 

E + (l/c)(v x B) = qj (4) 

where E is the electric field. To complete the system we take the following Maxwell 
equations 

V x E = -(l/c)(aB/&), (5) 
V x B = (4r/c) j, (f-3 

V.B=O. (7) 

We can combine Eqs. (4), (5), and (6) to give 

aB/& = V x (v x B) - (c%/~GT) V x (qV x B). (8) 

The plasma equilibrium is specified by v,, = 0 and given functions B, , T,, , and p. 
which satisfy the zero-order equations 

& P x Bo) x Bo - RPJJ = 0, (9) 

KV2To + (y - 1) ~0 (&I2 0’ x B,) - 0’ x Bo) = 0, (10) 

V x (r),V x B,) = 0. (11) 

We denote perturbed quantities by the subscript 1. The equations for the first-order 
variables are linearized and are given by 

(aPl/w + v * (PoVd = 0, (12) 

po f$ = $ Do * V B, + (B, * VI Bo - Wo * WI - V(PoTd 

- %Tol + pd4V(V * vd + V2v,l, (13) 

p,, $j = -po(v, * V To - (Y - 1) poTo(V * vJ + KV2T, 

+ (Y - 1) (&I” P7100’ x Bo) .O’ x W 

+ ,,(V x Bo) - 0’ x Boll, (14) 

3- 
at - V x (vl x B,) - f V x [voV x I+ + QV x B,]. (15) 
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We solve the system of equations (12)-(15) in cylindrical coordinates r, 8, and z. 
The plasma equilibrium cotiguration is given by 

B. = ‘ho(r) + 2Bzo(r), 
F-0 = 0, To = To(r), f. = fo(r), rlo = 170(r). 

These functions are chosen to describe a particular experiment; in a toroidal device 
BBO is called the poloidal field, and B,, is called the toroidal field. 

We assume perturbations of the form 

fl(r, t) ei(me+kzz). 

From Eqs. (12~(15) we obtain seven equations for BJr, t), B&r, t), ql(r, t), vol(r, t,) 
uzl(r, t), T(r, t), and pl(r, t). The character of these partial differential equations and 
their associated boundary conditions require an implicit finite-difference scheme such 
as that used to solve coupled diffusion equations. 

In order to solve the systems of equations on the domain 0 < r < Rw , where Rw 
is the radius of the outer conducting wall, boundary conditions must be specified 
atbothr=Oandr=Rw. For a numerical solution, a boundedness condition at 
r = 0 is not sufficient, therefore the following symmetry conditions are used at r = 0 
for all t 

m=O 

(16) 

m=l 

B,, = BB1 = v,.~ = vel = 0, 
ah, 6 - zzz 
ar 

aP1 -0 
ar=--. ar 

m32 

ah, aBe1 a+ avel o - = 
ar -= ar ar=-= ’ ar 
V Tl = p1 = 0. 21 = 

(17) 

B,., = Bol = Tl = vyl = vel = vzl = p1 = 0. (18) 

Using the premise that the perturbed radial current vanishes at the outer wall Rw , 
Robinson [5] has used the infinite conductivity MHD theory to derive the following 
set of boundary conditions at Rw 

MRw , t> = v,,(Rw , t> = TdRw , t) = PI& > 6 = 0, (19) 

BdRw , t) = 
imRw a& 

m2 + kz2Rw2 ar v=Rw ’ 

v,,(&, t) = 
imRw avvl 

m2 f kz2RW2 ar r=R,+. ’ 

v,,(& , t) = 
ik,Rw2 a% 

m2 + kn2Rw2 ar r=Rw * 

cw 

(22) 
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These conditions are valid provided E . B # 0 at the wall and that the density p,, , 
temperature T, , and pressure p0 tend to zero as I + Rw . Note that the systems of 
equations are solved throughout the domain 0 < r < Rw , i.e., there is not a plasma 
region surrounded by a vacuum region nor is there a plasma region of finite con- 
ductivity surrounded by a region of infinite conductivity. 

3. FINITE-DIFFERENCE EQUATIONS AND METHOD OF SOLUTION 

3.1. Dimensionless Equations 

It is convenient to put the systems of hydromagnetic equations into dimensionless 
form. The two relevant times for the problem are the decay time of the equilibrium 
magnetic field or the resistive diffusion time 

TR = ba2/c2(+, (23) 

and the hydromagnetic (or AlfGen-wave) transit time 

7H = a(47r(p))l12/B, (24) 

where a is a characteristic length which is usually a measure of the thickness of the 
current layer, and B, (q), and (p) are characteristic values for the magnetic field, 
resistivity, and mass density, respectively. The two dimensionless independent variables 
are defined as 

P = da, ?- = t/TR. (25) 

If R is the value of r such that 

E . E = (m/r) B,, + kzBzO = 0, (26) 

then R is the radius about which the instability will develop if the equilibrium con- 
figuration is resistively unstable for the particular mode specified by the pair of mode 
numbers m and k, [l, 41. In the cylindrical geometry used here, these two mode 
numbers are specified independently, while in the planar sheet pinch model [I] only 
one number is required to describe a particular mode. 

The dimensionless dependent variables are defined as 

w = -ikrRVT1 u = kTRVol v = kTRVzl 

s=-i& h PC--- 
<P)(T) 

(27) 
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where k = (m2/R2 + kZ2)l12 and (T) is a characteristic value for the (normalized) 
temperature in units of energy/mass. The following parameters are also required: 

a = ka, (28) 
K, = k,a, 

s = 2 = (45-Y2 aB 
TH c2<rXpY2 ' 

i-L2!?-=- 7Rv 

C2(rl) a2 ’ 

(1= 47rK TRK 

c2<r><p> =a"<p)' 

p = WPW) 
B2 ’ 

(29) 

(30) 

(31) 

(32) 

(33) 

where S is the magnetic Reynolds number, I’is a dimensionless viscosity, A is a dimen- 
sionless thermal conductivity, and /I is the plasma beta which is the usual ratio of 
the fluid pressure to the pressure in the magnetic field. 

The following functions are given by the equilibrium configuration: 

F’ = E 
dP 

M’ = dM 
dp 

H’ = dH 
dp 

H” = !f$ H” = !$ , 

Defining the operator 

(34) 

the systems of dimensionless equations can be put into a more compact form. 
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TABLE 3.1 

Component Equations 

(1) 

(4) 

(5) 

(6) 

(7) 

(8) 

= 

-- = 
d2 a+ 

K.p av -- = 
d3 al 

P=pY+TB? 
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Using the dimensionless variables, the system of linearized hydromagnetic equations 
for the general case with compressibility, viscosity, and thermal conductivity is 
presented in Table 3.1. The parameter I in these dimensionless equations indicates 
those terms which would vanish if the fluid was assumed to be incompressible. 

3.2. D@erence Equations 

In this section the finite difference equations for the hydromagnetic models are 
described. The equations are presented in Eulerian form in which the independent 
spatial variable refers to a fixed coordinate system through which the fluid moves. 
The flow is characterized by a time-dependent velocity field which is determined by 
solving an initial value problem. 

In order to solve the systems of equations, the continuous space-time domain on 
which the equations hold is replaced by a discrete space-time mesh. For the space- 
time mesh to be used, the superscript n denotes the time level for the independent 
variable T, and the subscript j denotes the spatial mesh point for the independent 
variable CL. We have 

7 2 0, P a 0, 
rn = n A-r, n = 0, 1, 2 ,...) 

/+ =j& j = 0, 1, 2 ,..., J, (36) 

pJ= JAp = pw. 

It is assumed that values of all the dependent variables are known at all spatial 
mesh points at a time TV, and the problem is to determine their values at a later time 
?+l. To solve the problem, the differential equations are approximated at each spatial 
point by finite difference equations which are algebraic in form and which relate the 
dependent variables at time T n+l to the dependent variables at time P. To numerically 
solve a system of m differential equations in m dependent variables on a mesh con- 
sisting of J points, a set of m x J algebraic equations in m x J unknowns must be 
solved at time Tn+l. 

For the hydromagnetic models to be examined here, it is desired to find &A, T), 

&, T>, T(cL, T>, w(P, 7)~ u&, T), &, T), &-h T>, and &, 7) on the damin 
0 < ~1 9 pw, and where the initial distributions of these functions are given. The 
notation for the dependent variables is such that #jGj” = #(pj, Tn), 4,” = d&j, Tn), 

T,” = T(p* , TV), etc. It is assumed that the dependent variables and their derivatives 
are single-valued, finite and continuous functions of the independent variables p and 7. 

The operator L, as defined in Eq. (35), is given in finite-difference form as 

(LX)9 = xL -(~;I~ + xL + + X;,;--pXh _ ( rn; 1 + Kea) xj”, (37) 3 

@mjn = XL1 [& + 2pj1Ap ] 
xjn [+ + m2p; l + c] + xjr, [& - 1 - 

2/+ Ap 1 . (38) 
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The systems of hydromagnetic equations are differenced implicitly with a weighting 
factor I, where 0 < I < 1. For 1 = 0, the differencing scheme becomes fully explicit, 
i.e., the finite-difference equations are forward differenced and are uncoupled in the 
unknowns, each equation giving one of the unknowns Xjn+’ directly in terms of the 
known quantities Xjn. For 1 = 1, the differencing scheme becomes fully implicit, 
i.e., the finite-difference equations are backward differenced and are coupled in the 
unknowns, and a system of simultaneous equations must be solved to obtain X9F+l. 
For stability [6, 71, 3 < 1 < 1, and for all of the results to be discussed in this report, 
a value of E = + will be used, i.e., the equations will be completely centered in space 
and time. 

For the general case with compressibility, viscosity, and thermal conductivity 
(Table 3.1), the finite-difference equations for &.L, 7) and #JL, T), i.e., &Jr, t) and 

+ ; (Nj - +, [my” + (1 - I) Wj”] 
3 

+ & [l(Wj”,:’ - wj”-:‘> + (1 - I)( JVi”l - IV,“_,)] 

- * [zu;+l + (1 - I) U,“] + * [IV;+1 + (1 - I) V,“] 

- gj$ [@y&l - qy) + (1 - 1)(2$+:, - s;-_31 

- Nj’[zs;+l + (1 - I) s;]. 

Note: In Eq. (40) the parameter I = 1. 
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The finite-difference form of the energy equation is 

The finite-difference equations for the r, 8, and z components of the equation of motion 
are, respectively, 

-.& (Jy,“” - W,“) 
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(42) 

(43) 
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=’ ( K,Mj’ - J-$ Hj) ,ztg+l + (1 - Z) &“I 
3 

- * r4#:: - g3 + (1 - 0(~+1 - 4Ja1 

- Hj (3 + ~2) [Z$jn+’ + (1 - Z> +j”l 

- y [z&Y;+l + Tjw,“+l) + (1 - z)@jY,” + 5$42j”)] 

+ K&v T z(Lv);+l + (1 - Z)(W); + -+ [IV,“” + (1 - z)Vjn] 
I 3 

- & [Z(W&y - w-j”_:‘) + (1 - Z)( W,“,, - W:,)] 

IK 
--A 3 [z(F + z ,;+l + Kzv;+‘) 

+ (1 - 1) (T + 2 ujn + %vjn)] 1. (44) 
3 

Finally, the finite-difference approximations to the continuity equation and the 
equation of state are 

.g,r+1 - Wj” 
AT 

= & [Z(W,“;: - wi”_’ + (1 - I)( wj”,, - K?-l)l 

+% 
[IV,“” + (1 - I) V,“], (45) 

ZPT+l + (1 - Z) Pj” = pj[ZY,“+l + (1 - Z) Yj”] + Tj[ZS!T” + (1 - Z) Wj”]. (46) 

3.3. Method of Solution 

It is desired to solve the initial-value problem described by the systems of component 
equations as given in Table 3.1. Equations (39)-(44) are written as a single vector 
difference equation as follows: 

-A*Uf:t + BjVy+’ - C*Uy?t = dj” for j = 0, l,..., J. (47) 
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Here we use the superscript PZ to denote time levels, and the subscriptj to denote mesh 
points in r. The vector i3 is defined as 

‘B,l * 
4?1 4 
TI - Y 
VT1 W 
%l u 
VZl I V 

(48) 

and A, B, and C are 6 x 6 matrices. The matrix elements A, B, C, and dare given in 
detail elsewhere [8]. The system is linear, that is the A, B, and C depend only on r 
through the zero-order functions and their derivatives; consequently, we can use the 
familiar algorithm for linear tridiagonal systems, i.e., let 

uy+l = EjUjn+:l + Fjn 

where the Ej , Fjn are determined from the recurrence relations 

(49 

Ej = (Bi - CiE+,)-l Aj , 

Fj;-” = (Bj - CjE,-l)-l (dj” + CjI$Ll). 

The above calculation involves inverting a 6 x 6 matrix at each mesh point, which 
is done numerically. 

Equation (12) for the variable pl(r, t) is not a diffusion equation so we solve it 
simultaneously, but with a separate difference equation (45). 

The perturbed resistivity Tl(r, t) is computed from p1 , Tl , and BI using a standard 
resistivity expression, i.e., we have 

y(r, t) = F(po + p1 , To + Tl , B. + BJ, 

rk, 0 = rl(r, t> - rldr), 

where F is a given function. 

3.4. Boundary and Initial Conditions 

The required boundary conditions were described in Eqs. (16)-(22). The boundary 
conditions at r = 0 are used to find the E, and Fofl matrices of the tridiagonal algo- 
rithm (49), and the boundary conditions at r = Rw are used to determine U,n. 
Ditferencing Eqs. (16)-(22), using the points j = 0 and j = 1, and then using (49), 
the boundary conditions and the matrices E,, and Fan for all t for r = 0 are: 
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E, = 

the null vector, 

m=l 

E,, = 

t-0” = 0, the null vector 

m32 

(&JO = (Be& = w, = (%30 = hdo = wo = (Plhl = 0, 

E,, = 0, the null matrix, 

F*n = 0, the null vector. 
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At the outer wall Rw where j = J, the boundary conditions specified in Eqs. (19)- 
(22) can be expressed in finite-difference form as 

(B,l)T+l = --im& ($~-I , 
m2 -I- kz2RW2 

(vol)l;+l = --imRw (V&l 
m2 -I- kz2RW2 dr ’ 

(v,l)~+~ = -iWW 
m2 + kz2RW2 

(%$L , (54) 

where an explicit differencing has been used by approximating B,, and v,~ at the 
previous time step, and where use has been made of (51). 

For the special case of m = 0, the boundary conditions at Rw reduce to 

(B& = @dr; = (TX = (v,,)f = (v& = (p$ = 0, (55) 

(v&” = - & (V&l - (56) 0 

In order to begin the calculation, an initial perturbation must be applied to one 
of the dependent variables, usually v&r, 0). If the method of solving the linearized 
systems of hydromagnetic equations is consistent with the original assumptions, 
then the results should be independent of this initial perturbation. A variety of forms 
for this initial perturbation were tested; for example 

v,&, 0) = -(r - l-0) e-c+ro’, (57) 

where r, is an adjustable constant which determines the zero point of the initial profile, 
and C, is an adjustable constant which is used to vary the shape of the initial profile. 
Using (57) various z&, 0) profiles were tested using values of C, = 1,2, 5, IO,20 
in combination with r,, = Rw , R,/2, R,/3, Rw/4. For all combinations of C, and 
r, , it was found that the results were independent of the initial perturbation for both 
m =Oandm > 1. 

Other analytic forms for the initial perturbation were also tested, in particular, 

v,,(r, 0) = I?+ P - GJI for m=l, 

vr,(r, 0) = cc0 ($-) [l - (+-)"l for m#l, 

where here C,, is an adjustable constant used to vary the magnitude of the perturbation 
and where the shapes of the profiles are independent of C, . For values of C, ranging 
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from C, = 1 to C, = 100, the magnitude of the perturbation varies from approxi- 
mately 10-l to lo-@, and for this range of values it was again found that the resultant 
profiles and growth rates were independent of the initial perturbation. 

In general it was found that a form of initial perturbation profile as given by 
Eqs. (58) and (59) seemed to get the calculations started more smoothly at early time 
steps, and this form of perturbation is used for most of the equilibrium models dis- 
cussed in this report. Since the magnitudes of the perturbed profiles grow with time, 
a value of C,, m 75 was used so that for even the largest growth rates encountered, 
the problem settled down to an exponential growth long before the absolute magnitude 
of the profiles exceeded the limits of the computer. 

3.5. Computational Procedure 

In order to solve for the perturbed or first-order variables, the equilibrium or 
zero-order variables must be specified as functions of the radius. For the general case, 
the functions which must be specified are 

on the domain 0 < r < Rw . These functions then characterize the equilibrium 
model. To set up a particular problem for the general case, it is also necessary to 
specify the parameters 

a, m, k , Y, ni, T#, B. 

With the above quantities, the computer code then prepares the input needed to solve 
the systems of hydromagnetic equations. 

The equilibrium functions and their derivatives are specified in analytic form and 
computed within the code. The exponential growth rate p is then computed using 

or in finite-difference form, 

(61) 

4. APPLICATIONS 

To begin the numerical study of resistive tearing instabilities in diffuse pinch 
geometries, an equilibrium magnetic field model is chosen which has a nontrivial 
analytic solution [9] and which also contains characteristics of actual pinch fields, 
namely diffuse currents and a reversed B, . The model is referred to as the Lundquist 
[lo] fields or the Bessel function model (BFM), and its analytic solution is compared 
with the numerical results in order to test the applicability of the linearized hydro- 
magnetic equations and their associated computational solution. 
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The Bessel function model is a cylindrical force-free hydromagnetic equilibrium 
model with 

B,, = 0, 
4, = &J,(vr), (62) 

%I = &J&r>, 

where J,, and J1 are Bessel functions of the first kind, and B, and v are constants. 
The force-free feature of the model is characterized by the vanishing of the Lorentz 
force, i.e., at equilibrium 

(V x B) x B = 0, (63) 

and this condition is satisfied by the Bessel function model as given in Eq. (62). The 
magnetic fields of a force-free configuration can also be expressed by 

V x B = vB, (64 

where v is in general a scalar function of space satisfying 

B - Vv = 0, (65) 

and Eqs. (64) and (65) are satisfied by the BFM of (62) with v = constant. The 
equilibrium profiles for the BFM with v = 1 are shown in Fig. 3, where it can be seen 
that the first two zeroes of B,, (i.e., J,,) are J,,l = 2.405 and J,,,z = 5.520, and the 
first zero of Boo (i.e., J1) is Jlsl = 3.832. The conducting plasma boundary R, is 
placed at various radii, but in order to keep the equilibrium fields realistic, only one 
reversal in B,, is considered, and this implies R, < 5.52. 

FIG. 3. Magnetic field profiles for the Bessel function model (BFM). 
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Using the force-free Bessel function model for the equilibrium magnetic fields, 
the regimes of stability/instability as predicted by analytic theory are compared with 
the computational results. Growth rates are calculated for various (m, k,) modes 
and the results are presented in the form of stability diagrams [8]. Additional para- 
metric studies are also performed to determine the specific dependence of the growth 
rates on the position of outer conducting wall Rw , on the axial wave number k, , 
and on the magnetic Reynolds number S. 

A small perturbation of the form given in Eqs. (58) and (59) with C,, = 75 is applied 
to the equilibrium configuration, and the growth rate p is computed from 
p = (a#/&)/$, where +!J is the perturbed radial magnetic field. A problem is run until 
p becomes constant, i.e., until the growth becomes exponential. For a growing mode 
the perturbed variables increase with time, and for an exponential growth, p becomes 
a positive constant. For a stable mode the perturbed variables decay with time, and 
for an exponential decay, p becomes a negative constant. For some stable cases it 
was observed that the perturbed variables oscillate about the equilibrium values, 
never attaining an exponential growth or exponential decay. A mesh size of 101 points 
is used for all the problems to be discussed, and for a point at the center of the mesh, 
the time dependence of the perturbed radial magnetic field is shown in Fig. 4 for a 

DECAYING MODE 

FIG. 4. Radial magnetic field behavior for a growing mode, a decaying mode, and an oscillatory 
mode. 
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typical growing mode, decaying mode, and oscillatory mode. The magnitudes of the 
three profiles have been arbitrarily scaled to fit the same plot. It can be seen in Fig. 4 
that for the mesh point shown, the growing mode and the decaying mode settle down 
to an exponential growth and exponential decay, respectively. All other points on 
the mesh also settle down to an exponential growth or decay, but may do so at slightly 
earlier or later times than the point shown. 

For an arbitrarily chosen set of parameters, the growth of a typical perturbation 
profile 4 is shown in Fig. 5. Except for the first few time steps, the perturbation retains 

Fig. 5. Radial magnetic field profiles for m = 1, R, = 5, k, = 0.3, ,S = 100. 

its shape as it grows. For the same problem, the behavior of the growth rate p with 
time is shown in Fig. 6, and it can be seen that after some initial fluctuation, the growth 
rate becomes constant. Since the linearized hydromagnetic model excludes all non- 
linear effects, the growth rate will not saturate and the perturbed vairables will con- 
tinue to grow (or decay) at an exponential rate for as long as the calculation is 
continued. 

In order to determine realistic values for the equilibrium functions and the dissi- 
pative coefficients, characteristic values are chosen for the plasma number density ni , 
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FIG. 6. Variation of the growth rate p with time for m = 1, R, = 5, k, = .3, S = 100. 
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Characteristic Plasma Parameters 

Resistivity 
In h, 

7 = 1.435 x lO-8 - statohm-cm 
TV i 

Coulomb logarithm collision parameter 
r/a 

A, = 1.239 x lO+ 
4 

&Ti 
T = 1.576 x lo-‘“---- 

BB 

Thermal conductivity 

Plasma beta 

A = 1.051 x lo-‘S(y - 11% 

pi = 3.469 x 10-15~ 

Magnetic Reynolds number 

Equilibrium temperature profile 

Equilibrium density profile 

Equilibrium resistivity profile 

ni = #/cm*, Tg = “K, B = gauss, a = cm 

aBT:” 
s = 0.2122- 

nila In & 

T(p) = 1 

PO = 1 

dcl) = 1 
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temperature Ti , and magnetic field B. These characteristic values are then used in 
standard relations to get characteristic values for the resistivity, viscosity, and thermal 
conductivity. The appropriate characteristic values are then combined to determine 
the normalization for the dimensionless viscosity r, the dimensionless thermal 
conductivity (1, the magnetic Reynolds number S, and the dimensionless parameter /3. 
The characteristic values and dimensionless plasma parameters which are used in 
this report are summarized in Table 4.1. 

Using the FFBFM with the computer code for the general case, it was found that 
the instabilities occurred generally in the same region of (kZ , R,) space as was found 
for the incompressible case [S, 91, and the same general type of dependence of the 
growth rate on k, and R, was observed. Some typical results for the m = 0 and m = 1 
modes are shown in Fig. 7. It is possible to obtain growth rates for the m = 0 mode 

ka 
.6 .6 

FIG. 7. Variation of the growth rate p with k, for the BFM for the general case with m = 0, 
1, R, = 5.5, n = 1016/cm*, T = 16.7eV, B = 1950 gauss. 

in which viscosity is neglected, and Fig. 8 compares these growth rates with those of 
the viscous case. As might be expected, the addition of viscosity slows down the growth 
rate and in addition the most unstable wave number shifts to a slightly lower value 
for the viscous case. 

For a given ratio of (n/P), S varies with T3j2, and the variation of the growth 
rate p with S corresponds to the effect of increasing T or p in the general case. For 
n = 1016/cm3 and B = 1950 gauss, /3 is in the range 0.1 5 /I 5 1 for 0.01 5 T 
(kev) 5 0.1, and the corresponding values for S are in the range 50 5 S 2 1200. 
Some representative values are given in Fig. 9 for the m = 0 and m = 1 modes. 

For the m = 1 mode at k, = 0.4, the protiles of the perturbed variables B,, , 
Be1 , ~1, ~1, Q 3 Tl , q1 , p1 , andp, are shown in Figs. lOa-h. 
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FIG. 8. Comparison between growth rates for viscous and nonviscous cases for the BFM for 
m = 0, R, = 5.5, n = 1016/cm*, T = 16.7eV, B = 195Ogauss. 
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FIG. 9. Variation of the growth rate p with S, T, and /I for the general case with m = 0, 1, 
R, = 5.5, k. = 0.4, n = 1016/cm8, B = 1950 gauss. 
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FIG. 10. Perturbed profiles for the BFM for the genqal case with m = 1, R, = 5.5, k, = .4, 
n = 1016/cm*, T = 16.7 eV, B = 1950 gauss. 

In summary, it is found that the computer model can be used to examine resistive 
tearing instabilities for reversed field pinch configurations, and that the computed 
growth rates for the special case of the force-free Bessel function model occur in the 
regions of (kz , R,) space predicted by analytic theory. The inclusion of finite resistivity 
in the analysis of the FFBFM yields the result that the conducting wall must be placed 
approximately 2 % closer to the plasma in order to ensure stability against resistive 
tearing modes as well as ideal MHD modes. Since the BFM as used here is a force- 
free equilibrium, there are no pressure gradients as usually exist in real plasmas, so 
a more realistic reversed field pinch model which contains a pressure gradient will 
now be discussed. 

For high-beta plasmas, Robinson [ll] used the hydromagnetic energy principle 
to examine the MHD stability of diffuse pinch con&urations for infinitely con- 
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FIGURE 10 (continued). 

R 
(h) 

ducting plasmas surrounded by perfectly conducting walls. He constructed a reversed 
field configuration which has fi N 31 ‘A. This configuration will be referred to as the 
pitch and pressure model (PPM). For the PPM, a variety of parametric studies 
[8, 121 are performed to determine the specific dependence of the growth rates on the 
azimuthal wave number m, the axial wave number k, , the position of the outer con- 
ducting wall R, , the magnetic Reynolds number S, and the value of j3. In Fig. 11 is 
the reversed field pinch equilibrium given by the PPM, and in Fig. 12 we show the 
variation of the growth rate p. The inclusion of finite resistivity in the analysis of the 
PPM indicates that for positive k, values the conducting wall must be placed approxi- 
mately 22 % closer to the plasma in order to ensure stability against resistive tearing 
modes as well as ideal MHD modes, and up to 50 % closer to ensure stability for 
negative k, values. 

The code has also been used for studies of instabilities in the High-Beta Toroidal 
Experiment [13-151 at the Culham Laboratory, U.K. 
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R 

-.5- 

FIG. 11. (a) Be, B, , pressure and pitch profiles for the Pitch and Pressure model (PPM). (b) 
F = R -B = 0 curves for the PPM. 
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FIG. 12. Variation of the growth rate p with R, for the PPM for the general case with n = 
1.7 x 10i6/cms, T = 18.5 eV, B = 2000 gauss. The maximum wall position for complete MHD 
stability is denoted by RI. 
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